A Logical Mix of Approximation and Separation

Aquinas Hobot, Robert Docking, and Andrew W. Appél

! National University of Singaporeobor @onp. nus. edu. sg
2 Princeton University{r docki ns, appel }@s. pri ncet on. edu

Abstract. We extract techniques developed in the Concurrent C minmjegr
to build a framework for constructing logics that contairpapimation and/or
separation. Approximation occurs when the naive semadiinitions contain
a contravariant circularitye(g, invariants of first-class locks), while separation
occurs when one wishes to track resource accounting. We Bbamthese two
features can be mixed together in a modular way. Our work ishina checked
in Coq and available as part of the Mechanized Semantic tyibra

1 Introduction

The Concurrent C minor (CCM) project has been developinghaeized semantic
models for concurrency, higher-order stores, separagiot program logics [HAZ08].
To Xavier Leroy’s C minor language, which is a large indugtstrength C-like lan-
guage €.g, complex local control flow and a sophisticated memory mpfedr06],
we have added first-class locks and threads to make Cont@maimor. As a result of
the scale and goals of our project we have been forced toiggdesr semantic models
in increasingly sophisticated and modular ways [DAHO08,[19A41DA10].

Our focus here is an intimately related issue: the modulasiraction of a logic
on top of our basic semantic models in a mechanizationdhieway. We are particu-
larly interested in integrating two very useful featuresof logic: approximation and
separation. Approximation, in the sense that we use the isroommonly associated
with “step-indexing,” [Ahm04,DAB09,HDA10] a useful teclyue for reasoning about
certain kinds of recursion involving mutable state. In theMC project we use step-
indexing to model the invariants of first-class locks ane#us, but it also occurs in,
e.g, ML references. Separation is an orthogonal feature whitidreasoning about an
addressable memory, such as pointer aliasing. In the CClégirave are particularly
interested in using separation to reason about concurrency

We are able to smoothly integrate the features of approyxmaind separation by
carefully building a framework where both can coexist péalbe We model the as-
sertion language of the program logic semantically via gkeisemantics. That is,
formulae of the assertion language are identified with rogtalpropositions over a
set ofworlds which are some abstraction of the program states. This ésrenmn ap-
proach when mechanizing program logics, [Nip02] even amesgarchers who choose
to model the judgments of the program logic syntactically.

When defining a program logic, the choice of which worlds te isthe assertion
semantics depends strongly on the problem doma&nthe particular language being
modeled. The worlds contain most or all of the data in a pnogstate in addition to

certain metadata. Much previous work has focused on carstguicomplicated worlds
for expressive languages and using the derived logic togpsome theorem of interest
(often a soundness result) [HDA10,Ahm04,DHAQ09,COYO07]wewer, the important
step of building the logic on top of the worlds is often givdrod shrift. A reader is
left with the general impression that once the underlyinglei@s in place, building the
logic on top is straightforward. Unfortunately, this is rbivays the case.

Here we fill in the missing piece by explaining how to build bigticated logics
on top of clean axiomatizations. We construct a general éraonk for defining asser-
tion languages containing approximation and separatitwatit, a logic for worlds
that contain approximation and substructure. Throughuosiftaper we largely abstract
away from the details of any particular language, and thukale the choice of worlds
abstract as well. Instead, we will focus on axiomatizing tfeatures worlds must have
in order to support approximation and separation, and sigtww one can then build
a powerful assertion logic containing both these features.

We combine approximation with separation by using a “stdtkeproach in which
we first axiomatize how our worlds become more approximafjrand show how to
satisfy our axioms for settings wherein our worlds have nregal approximation. If
the domain of interest does not have any interesting apmation behavior€.g, a
basic type system or separation logic), then we give metfardsdding trivial approx-
imation behavior so that the rest of our framework will stitbrk. After defining the
basic operators of our logic 2.4, we define a multimodal layer on top§8 to build
smooth and modular logical framework for reasoning in thespnce of approximation.
In §4 we explain how to model and use the equirecursive opegator

Once we have specified how approximation should be handledspecify the
substructural properties of our worlds by forming a sepamaalgebra ing5 as in
[DHA09,COYO07]. If our worlds have no interesting separatgiructure, this step can
be omitted, or we can alternately provide a dummy implententa

Our primary interest is in settings that combine both appnation and separation.
In §6 we characterize the relationship between these propentie prove that the stan-
dard connectives of separation logic mix well with our logfcapproximation. 117,
we show how one can use indirection theory to satisfy all of approximation and
separation axioms simultaneously in a nontrivial context.

Implementation.Our constructions and proofs are machine-checked in Cabreaue
freely available as part of the Mechanized Semantic Libr@yr mechanization con-
tains a certain amount of “black magic Cogerg’d, typeclasses, implicit coercions) to
ensure that it slides together smoothly and works cleaoiyfthe perspective of using
the logic. From time to time we will mention a few design chesichat enable simpler
mechanical definitions/proofs, but readers particulamtgrested in this aspect of the
result should consult the mechanization. Our results aagadle at:

http://nsl.cs.princeton. edu/

Numbering conventionln this presentation we present three classes of equatiefis:
initions, numbered with roman numerals; Cog-veriftadoremswhich we enumerate
with arabic numerals; anaxioms in a given interfageenumerated with letters. Many
models can satisfy a given interface; one must prove thexasfoom its construction.

2 A Logic of Approximation

Here we present the framework of our Godel-Lob logic ofragpnation. The formu-
lae of the logic will be identified with predicates on worldst arehereditarywith
respect to an approximation relation. This simple baseaNdw us to build a powerful
intuitionistic logic into which we can later fit the modal asdbstructural features.

2.1 Hereditary scaffolding

We assume the existence of a setwafrlds W, whose precise construction depends
on the domain of interest; see [HDA1§R] for seven examples drawn from various
program logics. Given a functioR from worldsW to truth valuedT (e.g, T = Pr op
in Coq) and a relatio? between worlds, we say th&t is hereditary overR when, if
P holds on some worla, then it also holds on all worlds reachable franthroughR:

hereditary(P,R) = Vw,w'. P(w) — (wRw') — P(w') 0)

We assume that our worlds come with two operations for axi@ing approximation:
“level” |w| : W — N and “approximate’w ~» w’ : W — W. The intuition is that

|w| = n quantifies the “amount of information” in the world, and approximating

w into w’ erasesi(e., approximates) some information imto make it “fit” into level

n — 1. The level of a worldw| counts the number of times the world can pass through
the~ operation (emphasiss is partial). Apredicate P € P is a function from worlds

to truth valuedT that is hereditary over the approximation relation:

P = {PeW=T | hereditary(P,~)} (i)

In Coq, we define this type as a dependent pair and use imgdieitcions that allow us
to use the pair as a function when desired. We introduce ttegionw = P when we
wish to emphasize that we are thinking@fas an assertion rather than a function:

wE=P = P(w) (iii)
We sayP entails@, written P - @, when the truth of? forces the truth of):
PFQ = Vw. (w E P) = (w E Q) (iv)

We write~~* and~"T for the reflexive and irreflexive transitive closure of theagxi-
mate relation, respectively. We say that two worldandw’ arefashionablé, written
w ~ w', if they contain the same amount of informatiae,, if |w| = |w’|.

Connection to intuitionistic logic.Our framework has much in common with Kripke
models of intuitionistic logic in that predicates are hét@y over a relation between
worlds. We develop this connection further ég, our model for implication ir§2.4.

* The name “fashionable” is a play on words from when we usemthe-thased analogy for levels.
A predicateP which holds fashionably is true on every world “now,” but rhaynot tomorrow.

2.2 Axiomatization of Approximation

What kinds of properties do we require the approximationrajens~» and| - | to
have? In fact, our categorization for approximation is ggimple**

Level of bottom: (Fw'. w~ w') = |w| =0 @)
Level of approximation: (w~w') — |wl=+1 (b)
Weak unapproximation: (Gw. |w| = |w'|+1) = Jw. w~w (©)

If the worldw cannot be further approximated, the levelofmust bed (a). If the world
w is approximated ta’ then the level ofv must be 1 larger than the level of (b). Fi-
nally, we sometimes wish to “unapproximate”—thatis, gigeme worldw’, we would
like to find a worldw such thatw ~ w’; an unapproximation to a given' only exists if
there is some world containing more information th@nThis unapproximation axiom
allows us to obtain stronger equations relating to the appration relation (seé3).
Three of the most important consequences of axioms (a)rddha following:

Can't approximatejw| = 0 — (Fw’. w ~ w') (1)
Can approximate: (|w| > 0) — Jw'. w ~ w’ ()
Well founded: (Vw. (Vo' (w~w') = w'EP) - wlkP) = Yw. wiEP (3)

That is, worlds of level cannot be approximated further; but any world of level ggeat
than0 can be approximated. Moreover, the approximate relatiaveisfounded and
thus allows proofs by induction over the action of approxiora

2.3 Models

A modelis atripleW, ~, | -|) of a set of worlds, an approximate operation, and a level
operation such that axioms (a)—(c) hold. We present a simglgel to give intuition
and then a series gfeneratorghat build complex models from simpler components.
We conclude with a nontrivial model generatedibgirection theory

Naturals. A very simple model is the naturalgy, ~y, | - |n), i.e, W = N. Itis simple
to define the approximation operations in this setting ded@: n ~y n' =n =n'+1
and|n|y = n. Axioms (a)—(c) follow directly from these definitions.

Generators. Showing that a particular model satisfies a collection obmd is not
always easy. A generator for a collection of axioms suchag4¢pis a method for con-
structing models for those axioms in a modular way by conmgjmirevious models in
well-behaved ways. This is a particularly valuable techieiopn mechanized frameworks

** To avoid clutter in our presentation, when we write an irgtegf axiom we omit universal
guantifications for variables scoped over the entire eqoagi.g, axiom (c) is actually:

vw'. (Qw. |w| = |w'|+1) = Jw. w ~ w')

wherein small changes to the definitions can require sigmfiamount of repair work.
We use generators over a variety of axiom sets to allow ramidtcuction of models.
From time to time we discover we are in some new setting antbindase our first task
is to define a new generator so that if we encounter that gedtiain we can apply our
new generator immediately. Our generators for the appratian axioms are:

— Trivial. Given a set of world§V, we can define theivial model (W, ~, | - |o) by
setting andw|o, = 0 and making the~ function undefined everywhere. We stated
axiom (c) delicately to enable the trivial model, since wentvaeither approxima-
tion nor unapproximation. All predicates are automatichéireditary.

— SemiproductGiven a mode(W, ~-, | - |) and some other sét, we can define the
semiproduct modéW x S, ~>wx s, |- lwx s) by defining approximate and level as:

(w, 8) »wxs (w',s) = (s=s)A(w~w) and |(w,s)|lwxs = |w|

— Bijection.Given a mode(W, ~+, |-|), some other sef, and a bijectiory : W — 5,
we can define theijection mode(S, ~¢, | - |) by setting

swps = [T s) - SN) and (sl = [F7(s)).

Although we only define a few generators here, we have fouattkiey are sufficient
for a large number of settings. One typically splits worldwiparts with trivial and
nontrivial approximation behavior and combines the twaxgdhe semiproduct con-
structor, perhaps defining a bijection to a form more coreinfior the remainder of
one’s proof. The trivial model is useful in most cases whemn gbt of worlds does
not have interesting approximation behavior; the excepgavhen one wishes to use
the recursion operatqr defined in§4 sincep requires nontrivial approximation. In
this case, semiproduct is useful in conjunction with thevabmodel for the naturals
(N, ~n, | - |v) to addnon-trivial approximation behavior to a set of worl&§.

Indirection theory. The flagship non-trivial model for our approximation axioms
given by indirection theory [HDA10]. Indirection theoryguuces approximate solu-
tions to a class of recursive domain equations defined bydhedoequation:

K ~ F(KxO)=T)

HereF is a covariant functor (a type function together with an atienfmap satisfying
the functor laws)(is some “other” noncircular data, arfd is the object one wishes
to model. A cardinality argument shows that this pseudoggpuhas no solutions in set
theory. Indirection theory approximates a solution by ¢artding a typeK (called the
knof) and a mode(K, ~, || k) that satisfies axioms (a)—(c). Our current construction
of K is similar to the one given in [HDA1(;8] but we have enhanced it so that all
predicates contained in a knot are hereditary [ADHI(ot _her ed. v]. We use the
product constructor to build the related mo@gl x O, ~kx0,| - |kxo) and definé®
as the set of hereditary functions overx « o as in definition §f).

Indirection theory also constructs two functionguash : Nx F(P) — K and
unsquash : K — NxZ'(IP) whose behavior is given by the following set of equivalences

squash(unsquash(k)) = k
unsquash(squash(n, F)) = (n,fmap approx,, F)

That is,squash o unsquash is the identity function, andnsquash o squash is a kind of
approximation function. Thénap function transformg : F(P) by locating all of the
predicates P insidef and replacing them withpprox,, (P), defined as:

approx,(P) € P

o, P(w) |w|lgxo < n
L |w|K><O >n

The relationship betweesmuash-unsquash and(K, ~k, | - |k) IS given by:

|k| = (unsquash(k)).1
k~k <« let(n,F)=unsquash(k) in (n>1) A k' =squash(n —1,F)

The level ofk is equal to the first projection d&fs unsquashing and approximation is
equivalent taunsquashing and then r&juashing to the next lower level. Axioms (a)—(b)
follow directly; for (c), unsquash and then requash to the nexthigherlevel.

We have used indirection theory to reason about first-cladsslin a concurrent
program [Hob08]; mutable references in the polymorphialculus; and program ter-
mination in a setting with function pointers and semaatigert statements [DH10].

2.4 Hereditary Base Logic

Truth constant: wkeT T V)
Falsehood constant: whkE L1 = 1 (vi)
Conjunction: wkEPAQ = wWEP)A wEQ) (vii)
Disjunction: wEPVQ = wWEP)VwEQ) (viii)
Impredicative universal: w EVz:7. P(x) = Va:7. wE P(x) (ix)
Impredicative existential:w |= 3z : 7. P(z) = 3Jz:7. w= Px) (x)
Implication: wkEP=Q = VZ)U} (’:;; _1>U()w'_>’: Q) (xi)
Negation: -P = P=>1 (xii)

Given a model of approximation, we can now give semantic diefivs for the oper-
ators of our base intuitionistic logic, which includes ttseial propositional connectives
as well as powerful higher-order quantification. Exceptifaplication, each defini-
tion consists of a direct lifting of the underlying metalogiperator and can be proved
hereditary easily from the assumption that the subformateehereditary. In contrast,
implication requires that the hereditary assumption bestak. The resulting model is
exactly a Kripke model of intuitionistic logic and the stamd intuitionistic proof theory
(introduction and elimination rules) can be proved as lesifram these definitions.

It is worth noting that the- occurring above in the definitions of universal and ex-
istential quantification is allowed to range over all thedgpf the metalogic, including
the typepredicate itself; this makes the quantifieimpredicative In contrast, a predica-
tive quantifier would only be allowed to quantify over obgtitat are smaller according

to some stratification, which turns out to be a significantiécal restriction. Modeling
certain programming language features, such as functimus, requires the stronger
impredicative style of quantification that we provide.

3 The Very Model of a Modern Multimodal Logic

Appelet al. [AMRV07] showed how to reason about the action of approxiamatising
modal logic; we go further using theultimodalapproach outlined in [DAHO8]. A
modalityM € M is a binary relation that commutes with the approximatidatien ~:

M={MeW->W-T|
Vw w”. (Fuw' . (w~ w') A (W' Mw”)) < (Fuw' . (wMw') A (W'~ w”))} (xiii)

This condition on modalities is used to guarantee that thdahoperators below are
hereditary. Most “reasonable” relations one would likeediice are modalities. We have
seen four approximation relations: approximateand its reflexive~* and irreflexive
~7T transitive closures, and the same-level relation fasttilyna; all are modalities:

{ro,) o M (4)

The point of characterizing modalities is that we can theimdemodal operators pa-
rameterized by various modalities.

Necessarily: wEOy P = Yo' (wMuw')— (v | P) (xiv)
Hypothetically: w | Op P Ju'. (W' Mw) A (w' = P) (xv)

Note we use the standard definition of the universal modaljfy, but our definition of
the existential modality ,, is backwards from what one might expect; indeed, we use
the “proof-theoretic” dual discussed by Restall [ResOQ}@zosed to the more familiar
boolean dual. We work with this proof-theoretic dual beeaiiss immediately defin-
able given the commutativity restrictions from definitionii) (whereas the boolean
dual requires a different condition).

One of the major advantages of identifying and using modeafatprs is that there
are a variety of useful rules and equations that apply to allahoperators. A few of
these are listed below.

uMPFQ <+« PHOuQ (5)

Ov (P=Q) F 0OuP=0uQ (6)
O (PAQ) = Oun PAOnQ (1)
OmMm(PVQ) = OuMPVOMQ (8)

Op (Vo :7. P(z)) = Va:7.0Oy Px) 9)
OvBz:7.P(x)) = 3Fz:7.0m P(x) (10)

Lemma (5) gives the characteristic relationship betweentimodality and its associ-
ated duak) modality. Readers familiar with modal logics will recogaif6) as axiom
K, which is characteristic the “normal” modal logics.

Given the data we have about worlds and approximation aptiiig, we can define
two important modal operators which capture some of the mapo aspects of the
approximation model.

Approximately: >P = 0O4P (xvi)
Fashionably: OpP = OLP (xvii)

The approximation modality is especially important because it mediates the action
of approximation. It interacts in a significant way with balte key Godel-Lob induc-
tion rule (below) and with the recursion operator descrilvegd. The fashionability
modality also interacts in a strong way with recursion. Besesof the special relation-
ship~~ has with all the formulae of the logig,enjoys some additional properties.

>0y P) = Oy (P) (11)
>(P=Q) = >P=pQ (12)
>(PVQ) = pPVpQ (13)
QA>PFP — QFP (14)

Lemma (11) shows thatcommutes with everlyl modality; this is a consequence of
the validity condition for modal operators. Lemma (12) skdhat> enjoys a stronger
form of (6). Lemma (14), called the Lob rule, is especialbtable because it embodies
a kind of induction principle. It says that we can prove thaentails P if we can
show the (apparently) weaker statement that> P entailsP; here>P is the induction
hypothesis. The Lob rule follows from (3).

Note that (12) is a strengthened version of (6) with an eguedither than an en-
tailment. We prefer equalities (when they can be achiewedhtailments because they
allow us to use substitution tactics in mechanized proefg, ¢ ewr i t e in Coq) which
is significantly more convenient than introducing a cut.

4 Recursion

In addition to its other benefits, the approximation streetiaked into our logic gives us
a powerful way to define recursive predicates. Suppose wedpredicate functioR' :
predicate — predicate; then we can construct the recursive predigaké: predicate
satisfying the usual fixpoint equatign’ = F(uF") provided thatF is contractive
Before we can formally define contractiveness we need a felitiadal definitions.
Recall from above the “fashionably” modality) P = O., P. The underlying
relationw ~ w’ holds iff |w| = |w’|, so P holds whenP holds in all worlds of the
same level. Using), we define a stronger form of implication called “subtyping.

PCcR = OWP=Q (xviii)

Subtyping is quite a bit stronger than regular implicati@cduse the only information

it can “see” is the level of the current world. However, it mnsewhat weaker than

unconditional entailment. That is,df = P C @ it might not be the case th& - Q.
We say thatP? and(@ areequivalentand writeP = Q iff P C Q and@ C P. The

intuition is thatw = P = @ holds if P and@ are indistinguishable on worlds of level

w and smaller. Any world that separatBdrom ¢Q must have a level greater than|.
We say thatF' is contractive iff:

VP,Q. >(P=Q)F F(P)=F(Q) (xix)

What does this mean? Every time you iterate the predicatim/, it “consumes”
one level of approximation before using its argument. Ugutlis means that the defi-
nition of F' contains a operator guarding the occurrence of its argument.

What all this means is that we can defjnas a finite number of iterations &f:

w = uF = w = FI(L) (X%

Here F* meansF' iteratedn times. The key point is that as long &sis contractive
then we can prove the defining fixpoint theorem fgor

uF = F(uF) (15)

Note that in the end we get a strong fixpoint theorem suchytliais simply equalto

its one-step unfolding, which makes this a formegfuirecursionin contrast, systems
with isorecursiontypically require some computational step to allow the ffddand
unfolding of recursive definitions. Equirecursion is mooseenient for our purposes
because it allows us to use the rewriting facilities of thegbassistant, and also because
it helps to decouple the semantics of the assertion logiu i (typically operational)
semantics of the language. Furthermore, using the Lobcimmturule and the fact that
F'is contractive, we can easily show that is theuniquefixpoint of F' [Ric10, §5].

5 Separation Algebras

Separation algebras are mathematical structures useddel meparation logic. They
provide the notion of disjoint merging that is central to theaning of the operators
of separation logic. We use a variant called a disjoint mutit separation algebra
(hereafter just “DSA") [DHAOQ9]. Briefly, a DSA is a séi and an associated three-
place partiajoin relation &, writtenx @ y = z, such that the join relation satisfies:

Functional: (r@y=2) = (@By=2) — 21 =2 (d)
Commutative: z®y = y®a (e)
Associative: r®(yYdz) = Dy Bz)]
Cancellative: (1 @y=2) = (x2®y=2) — x1 =9 (9)
Units: Ve, Jug. 2B u, = (h)
Disjointness: (z@z=y) — =y (i)

These axioms define a structure that is like a commutativeoidon many ways, except
that® is allowed to be a partial operation. The partiality is intpaot, because it encodes
disjointness. Ift @© y = z, thenz andy are disjoint, by definition.

Hidden in these axioms is the idea ofidentity. We sayz is an identity if whenever
x @y = z, theny = z. One fundamental property of identities is thaan identity if
and only ifx @ x = x. The units axiom (h) asserts the existence of (possibly pnany
identities. It is a consequence of the axioms that each elemest have ainique
identity associated with it.

In the following section we shall see how to use a separatgebaa to build a sep-
aration logic. For the remainder of this section, we willdfir touch on some example
DSAs and constructions for building more complicated ones.

5.1 Models

A model of a separation algebra is a set of woligogether with a join relatiom
satisfying axioms (d)—(i). We give two trivial examplesliéoved by a series of simple
generators, and conclude with some nontrivial generataieaamples.

Examples and generator3he DSA axioms are well-behaved in the sense that they are
easily propagated across a variety of useful constructlarmur work we have used the
following, all of which are already implemented in Coq to bleerapid development:

— Discrete.Given a setS, define thediscrete DSAS, ©-) by defining
S1 D= S2 = 83 = S1 = S = 83

Every element joins only with itself and is an identity. Aris (d)—(i) follow.
— Option. Given a setS, define theoption DSA(S?, ®-) by settingS,; = None +
Some(s) and the join relatiord- as the least relation satisfying (wherec S»):

None @ S? = 87
S? @2 None = s

The - relation includedNone @ None = None. Axioms (d)—(i) follow easily.
— ProductsIf we are given two DSA$A, @ 4) and(B, &), we can define thprod-
uct DSA(A x B, ® 4« p) componentwise by setting:

(a1,b1) @axp (a2,b2) = (a3,b3) = (a1 ®aaz=a3z)A(by ®p by = b3)

Axioms (d)—(i) follow directly from the same axioms ohandB.
— Functions.Given a setd and a DSA(B, ®p), we can define théunction DSA
(A — B,®4-,p) by lifting the DSA onB pointwise as follows:

f ®asp g = h = Va. (f(a) ©p gla) = h(a))

Axioms (d)—(i) follow directly from the axioms o#.

10

— Bijection. Given a DSA(A4,®4), a setB, and a bijectionf : A — B, we can
define thebijection DSA(B, ¢) by setting

bi ©f by = b3 = [THb1) ®a () = [T (ba)
Axioms (d)—(i) follow becausé¢ is a bijection and the axioms hold oh

The previous generators are simple but very useful. For plarif A is a set of ad-
dresses an#l” a set of values, then the archetypical example of partiajnamo heaps
is given by the DSAA — (V2), ® a—(v,)), Using the function and option generators.
We have a large number of other generators in our toolkitd vait, discrete, disjoint

sums, lists, subset, liff/-types, X -types, finite partial maps, and lattices; a number

of these are described in some detail in [DHAQ9]. Here we @rm@nother generator,
similar in some ways to the bijection DSA covered above butengeneral:

— Section-retractionSuppose we have a DS/,). A functionh : B — Bisa
join homomorphismvhen:

by ©®p by = b3 — h(b1) © h(b2) = h(b3) (xxi)

That is, joining is preserved by. Now suppose we have a sétand a section—
retraction pair: two functiong : A — B andg : B — A such thaty o f is the
identity function onA; note that in any section—retraction pdgiis automatically
injective whileg is automatically surjective. Suppose further tliatg : B — B is
a join homomorphism. Define treection—retraction DSAA, @ ;) by setting:

a1 Dyg) a2 = as = fla1) @B fla2) = flas)

In other words, we take the separation structure inducecherpteimage off.
Axioms (d), (g), and (i) follow directly from the injectiwitof f and the underlying
axioms ond . Axiom (e) is even simpler and is direct from the commutayiaf
@ p. The associativity (f) and units (h) axioms are tougherhbveqjuire thay o f
is the identity,f o g is a join homomorphism, and the underlying axiomszos.

The significance of the section—retraction generator isithaill be just what is
needed to handle theisquash—squash pair constructed by indirection theory.

6 Mixing Separation and Approximation

Once we have defined the separation structure on a set ofsyerédare nearly ready
to define the operators of separation logic. However, tafiate with the approxima-
tion features of the logic, we need some additional axiomiskvansure that separation
and approximation can play well together in the same sandbex figure 1). These
four axioms have the flavor of commuting diagrams; we rechia¢ the approximation
relation and separation “slide around” each other cledifilyere are a total of six pos-
sible cases, but two are subsumed by commutativity). Theieena let us prove the
heredity of the operators of separation logic and to shotvateuseful results about the
commutativity of approximation operators with separatiperators.

11

(w1 B w2 = ws) — (w1 ~ wi) —

O A)

Jws, ws. (W] G wh = ws) A (we ~ wh) A (wz ~ wh)

wil I@ wlz - w13
, w, & w, = w,
(w1 B w2 = ws) — (ws ~ ws) — msmmmmmmmmem .
Jwl, wh. (W] & wh = wi) A (w1 ~ wi) A (wa ~ wh) Ei : ii)
1, W2- 1 2 3 1 2 :w’l @ w;2: :w;3
w, 1® w, = w, !
(wh ® wh = wh) = (wr ~ wl) = s o
Fwr, wa. (w1 @ wa = ws) A (wa ~ wh) A (ws ~ wh) " I-G-B“Q-l)-';-:";l};
w, ® w, = w
(w] & wh = ws) = (w3 ~ wh) — :il ik :ig)
1 1 m
Fwi, wa. (w1 @ w2 = ws) A (w1 ~ wi) A (wa ~ wh) I_&;: _6_9“1_1)_';_:_‘ w'3
Fig. 1. Axioms for Mixing Separation and Approximation
Now we can give the definitions of the standard operatorsydrsgion logic.
Empty: wEemp = identity w (xxii)
. 3 . =
Separation: wEP+Q = 12 (w1 & ws = w) N (xxiii)

(w1 = P) A (w2 = Q)

Seplication: w; = P— Q = le’i"f&;‘;‘ fi”lp“):“é}tg ; 81 Swr=w) (i

The assertiomrmp and the separating conjunctiercan be shown hereditary by using
axioms (j) and (k). Notice that the definition of seplicatexplicitly quantifies over all
more approximate worlds, just as does the definition of iogpion, making it immedi-
ately hereditary from the definition. Just as with implioatithe semantics takes on an
intuitionistic flavor, but in general works exactly as exiget

With these definitions stated, we can easily prove the standéerence rules of
separation logic and various equalities among formula¢e Mquations (20) and (21);
these elegant equations are the result of our insistentagpeoximation and separation
interact smoothly. Their proofs make essential use of agi@jrand (m).

12

Commutativity: Px@Q = QxP (16)

Associativity: (PxQ)xR = Px(QxR) a7
Identity: empxP = P (18)
Seplication adjoint: (PxQ)FR = P+ (Q—xR) (19)
Approx sepconjunction: >(PxQ) = (bP*>Q) (20)
Approx seplication: >(P—+Q) = (@EP—=*>Q) (21)
Split sepconjunction: (P Q) — (RES) - (PxR)F(Q=%S) (22)
Cut seplication: (PFQ—=*R) - (SFQ) — (PxS)FR (23)

In addition to the standard operators of separation logecan define three sub-
structural modalities. First, we say that is asubstateof ws, writtenw; < ws, when

w1 = We = Juw'. w B w = wsy (Xxv)

Informally, wy is a smaller state tham, because you can add to w; to getws,; it
corresponds to theubstateelation with respect to the separation structure. Seosad,
say thatw; andwsy areorthogona) written wi iws, when

w1 fws = Juw'. w; Bwe = (xxvi)

Two states are orthogonal when they are compatible in theestivat they can join
together. Finallyyw; andws aresubstructurally comparablevritten w;, $ws,, when

w1 Sws = Fw. (w1fw) A (wafw) (xxvii)

Two worlds are substructurally comparable when there &sisine world (typically an
identity) that is orthogonal to both of them. We can consttierelements of a DSA as
being divided into equivalence classes where there is @s ¢br each unit, and every
element with the same unit is in the class. Tienanges over all the elements in the
same equivalence class.

All of these substructural relations are valid modalitiesading to the definition
from §3. The validity proofs are direct consequence of axioms froguaire 1.

{=,48) ¢ M (24)
A further consequence is that our substructural modaktiesall fashionable:
(w1 = wg) vV (w1 ﬂwg) V (w1 ,@J’LUQ) — W1 ~ Wy (25)

We often find it convenientto express substructural ideggusodalities like these.
For example, consider the diamond form of the substateioalad < P holds exactly
when some substate of the current state satisfida other words, adding< makes a
predicate invariant under state expansiagxlittle manipulation shows that:

O<P = PxT. (26)

 Such predicates were call@duitionisticin Reynolds’ work on separation logic [Rey02].

13

1 @ o ::
¥ fly) = f(z) — T f'j o
Jz,90. @Yo =2 A f(@) =a' A f(yo) = f(y) '“'g;r'é"ﬂz})' = f2)
Ti® oy, = 2
f@)e fly) =2 — Ao A .
Jyo,z. z@yo =2 A f(yo) = fy) A f(z) =7

fle) & fly)= 2

Fig. 2. Left and right unmappings

7 Separation logics over knots

An important use case (indeed, our motivating use case)dfmbiing approximation
with separation are the “knots” of indirection theory. We cpiite easily demonstrate
that knots satisfy the approximation axioms using the fater provided by indirec-
tion theory. However, to define a separation structure orikivee need to define an
appropriate join relation and prove the DSA axioms. The &poovided to clients are
opaque which means the client cannot examine the details of thetoaction. How-
ever, the client has provided the critical funct®rdescribing the internal structure of
unsquashed knots. We require the client to define a sepasttiacture ovef’ which
we then use to induce a separation structure over knots.

We proceed in stages. First we must make théNset F'(P) into a DSA. We will
require that the client of indirection theory demonstraia ¥ is a functor on DSAS,
i.e, wheneverX is a DSA, thenF'(X) is also a DSA. Furthermore, we require that
wheneverf : X — Y is a join homomorphism, thefmap f : F(X) — F(Y)
must also be a join homomorphism. Now we use our generatasrtstruct the DSA
(N x F(P), Brv_yx(rr-y)): that is, we pair up a discrete DSA @ with the DSA
generated by applying to the discrete DSA off.

We will use the section—retraction generator to induce a B@8Ahe setd = K
from the above DSA forB = N x F(P). Indirection theory gives us the section—
retraction pair{unsquash, squash). It is easy to show thatnsquash o squash is a join
homomorphism oB, completing the construction of the DSA féf.

We have two of the ingredients needed for a logic over knotls noth separation
and approximation. We have the approximation structureranidave a DSA. However,
in order to complete the picture we need to prove the didivie@xioms fromg6.

The two “forward” axioms (j) and (k) follow easily from the sismption that?" is
a functor on DSAs. The “backward” axioms (I) and (m), howewaee more involved.
Proving these axioms appears to require additional teahréstrictions on the func-
tor F', having to do with “unmapping.” The precise statement okéheechnical re-
quirements is given in Figure 2 and is rather involved. Hoeveproving that particular
functorsF have this property is usually easy.

Suppose one has a functign. A — B whereA and B are DSAs. We say that
hasleft unmappingsvhen it satisfies axiom (14) amgyht unmappingsvhen it satisfies

14

(15). We say a functaF preserves unmappingswheneverf is a join homomorphism
with left (right) unmappings, thefimap f has left (right) unmappings.

The existence of unmappings means thhas a weak kind of invertability property,
and the preservation of unmappings means that when suchkdwirezertable function
is applied withfmap, the resulting function is itself weakly invertable.

As with approximation and DSAs, we can show that many stahdanstructions
(when considered as functors) have the property of prasgmimappings. For exam-
ple, products, disjoint sums, functions and lists all presenmappings.

If F' preserves unmappings, then we can prove the “unapproxiniakioms (12)
and (13) for knots. The key is to note that thgprox function has left and right un-
mappings, and then lift the unmappings through the funktasing (14) and (15). The
unmappings ofmap f then provide the required witnesses for axioms (12) and (13)

We now have all the pieces necessary to build a separatiosMdtty approximation
over the knots of indirection theory. In the final accountiting client must provide, in
addition to the data necessary for indirection theoryfitgeproof thatF" is a functor
on DSAs, and an easy technical proof about the preservatimmoappings. From this
basic data, a rich logic of separation and approximationtsraatically built.

8 Conclusion

We have presented a method for constructing powerful éssdogics using a Kripke
semantics over a set @forlds We have given axiomatic interfaces that worlds must
satisfy in order to support higher-order stores in the atelexing style, and to support
substrucural features in the style of separation logics€h@o features interact in non-
trivial ways, and we have further shown how to get an elegadtveell-behaved logic
by requiring the approximation and separation relationsotmmute with one another.
Finally, we have shown throughout the paper how to consimadels of these ax-
iomatic interfaces that support a variety of interestinggpamming language domains.
The proofs and constructions that appear in this paper hese mechanized in Coq
and are freely available as part of the Mechanized Semaitiraty [ADH10].

AcknowledgementsAquinas Hobor is supported by a Lee Kuan Yew Postdoctoral Fel
lowship. Robert Dockins and Andrew W. Appel are supportegant by NSF grant
CNS-0910448 and AFOSR grant FA9550-09-1-0138.

References

[ADH10] Andrew Appel, Robert Dockins, and Aquinas Hobor. dhanized Semantic Library.
Available at http://msl.cs.princeton.edu, 2009-2010.

[AhmO04] Amal J. Ahmed.Semantics of Types for Mutable StathD thesis, Princeton Uni-
versity, Princeton, NJ, November 2004. Tech Report TR-UA.3-

[AMRVO07] Andrew W. Appel, Paul-Andre Mellies, ChristophB. Richards, and Jerdme Vouil-
lon. A very modal model of a modern, major, general type syst@ Proc. 34th An-
nual Symposium on Principles of Programming Languages (P@®, pages 109—
122, January 2007.

15

[COYO07]

[DABO9]

[DAHOS]

[DH10]

[DHAO09]

[HAZ08]

[HDA10]

[Hob08]
[Ler06]

[Nip02]

[Res00]
[Rey02]

[Ric10]

Cristiano Calcagno, Peter W. O’Hearn, and Hongséulg. Local action and abstract
separation logic. IhICS '07: Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Sciengpages 366—378, 2007.

Derek Dreyer, Amal Ahmed, and Lars Birkedal. Lodistep-indexed logical rela-
tions. InProceedings 24th Annual IEEE Symposium on Logic in CompteEmnce
(LICS’09), 2009.

Robert Dockins, Andrew W. Appel, and Aquinas Hoblultimodal separation logic
for reasoning about operational semantics24ith Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXPp#ges 5-20. Springer Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 2008

Robert Dockins and Aquinas Hobor. A theory of terntiaa via indirection. Under
submission, July 2010.

Robert Dockins, Aquinas Hobor, and Andrew W. AppeA fresh look at separa-
tion algebras and share accounting. Time 7th Asian Symposium on Programming
Languages and Systen®&pringer ENTCS, 2009. To appear.
Aquinas Hobor, Andrew W. Appel, and Francesco Zapgadelli. Oracle semantics
for concurrent separation logic. Proc. European Symp. on Programming (ESOP
2008) (LNCS 4960Q)pages 353—-367. Springer, 2008.
Aquinas Hobor, Robert Dockins, and Andrew W. AppAltheory of indirection via
approximation. IrProc. 37th Annual ACM Symposium on Principles of Prograngmin
Languages (POPL'1Qpages 171-185, January 2010.

Aquinas HoborQOracle SemanaticPhD thesis, Princeton University, Princeton, NJ,
November 2008.

Xavier Leroy. Formal certification of a compiler kaend, or: programming a com-
piler with a proof assistant. IROPL'06, pages 42-54, 2006.

Tobias Nipkow. Hoare logics for recursive procegkirand unbounded nondeter-
minism. InComputer Science Logizolume 2471/2002 of NCS pages 155-182.
Springer, 2002.

Greg RestallAn Introduction to Substructural LogicRoutledge, London, England,
2000.

John Reynolds. Separation logic: A logic for sharedable data structures. LiCS
2002: IEEE Symposium on Logic in Computer Sciepages 5574, July 2002.
Christopher D. RichardsThe Approximation Modality in Models of Higher-Order
Types PhD thesis, Princeton University, Princeton, NJ, Jun€201

16

