
A Logical Mix of Approximation and Separation

Aquinas Hobor1, Robert Dockins2, and Andrew W. Appel2

1 National University of Singaporehobor@comp.nus.edu.sg
2 Princeton University{rdockins,appel}@cs.princeton.edu

Abstract. We extract techniques developed in the Concurrent C minor project
to build a framework for constructing logics that contain approximation and/or
separation. Approximation occurs when the naı̈ve semanticdefinitions contain
a contravariant circularity (e.g., invariants of first-class locks), while separation
occurs when one wishes to track resource accounting. We showhow these two
features can be mixed together in a modular way. Our work is machine checked
in Coq and available as part of the Mechanized Semantic Library.

1 Introduction

The Concurrent C minor (CCM) project has been developing mechanized semantic
models for concurrency, higher-order stores, separation,and program logics [HAZ08].
To Xavier Leroy’s C minor language, which is a large industrial-strength C-like lan-
guage (e.g., complex local control flow and a sophisticated memory model) [Ler06],
we have added first-class locks and threads to make Concurrent C minor. As a result of
the scale and goals of our project we have been forced to redesign our semantic models
in increasingly sophisticated and modular ways [DAH08,DHA09,HDA10].

Our focus here is an intimately related issue: the modular construction of a logic
on top of our basic semantic models in a mechanization-friendly way. We are particu-
larly interested in integrating two very useful features ofour logic: approximation and
separation. Approximation, in the sense that we use the term, is commonly associated
with “step-indexing,” [Ahm04,DAB09,HDA10] a useful technique for reasoning about
certain kinds of recursion involving mutable state. In the CCM project we use step-
indexing to model the invariants of first-class locks and threads, but it also occurs in,
e.g., ML references. Separation is an orthogonal feature which helps reasoning about an
addressable memory, such as pointer aliasing. In the CCM project we are particularly
interested in using separation to reason about concurrency.

We are able to smoothly integrate the features of approximation and separation by
carefully building a framework where both can coexist peacefully. We model the as-
sertion language of the program logic semantically via a Kripke semantics. That is,
formulae of the assertion language are identified with metalogic propositions over a
set ofworlds, which are some abstraction of the program states. This is a common ap-
proach when mechanizing program logics, [Nip02] even amongresearchers who choose
to model the judgments of the program logic syntactically.

When defining a program logic, the choice of which worlds to use in the assertion
semantics depends strongly on the problem domain,i.e., the particular language being
modeled. The worlds contain most or all of the data in a program state in addition to

certain metadata. Much previous work has focused on constructing complicated worlds
for expressive languages and using the derived logic to prove some theorem of interest
(often a soundness result) [HDA10,Ahm04,DHA09,COY07]. However, the important
step of building the logic on top of the worlds is often given short shrift. A reader is
left with the general impression that once the underlying model is in place, building the
logic on top is straightforward. Unfortunately, this is notalways the case.

Here we fill in the missing piece by explaining how to build sophisticated logics
on top of clean axiomatizations. We construct a general framework for defining asser-
tion languages containing approximation and separation—that is, a logic for worlds
that contain approximation and substructure. Throughout this paper we largely abstract
away from the details of any particular language, and thus wehold the choice of worlds
abstract as well. Instead, we will focus on axiomatizing what features worlds must have
in order to support approximation and separation, and showing how one can then build
a powerful assertion logic containing both these features.

We combine approximation with separation by using a “stacked” approach in which
we first axiomatize how our worlds become more approximate in§2, and show how to
satisfy our axioms for settings wherein our worlds have meaningful approximation. If
the domain of interest does not have any interesting approximation behavior (e.g., a
basic type system or separation logic), then we give methodsfor adding trivial approx-
imation behavior so that the rest of our framework will stillwork. After defining the
basic operators of our logic in§2.4, we define a multimodal layer on top in§3 to build
smooth and modular logical framework for reasoning in the presence of approximation.
In §4 we explain how to model and use the equirecursive operatorµ.

Once we have specified how approximation should be handled, we specify the
substructural properties of our worlds by forming a separation algebra in§5 as in
[DHA09,COY07]. If our worlds have no interesting separation structure, this step can
be omitted, or we can alternately provide a dummy implementation.

Our primary interest is in settings that combine both approximation and separation.
In §6 we characterize the relationship between these properties and prove that the stan-
dard connectives of separation logic mix well with our logicof approximation. In§7,
we show how one can use indirection theory to satisfy all of our approximation and
separation axioms simultaneously in a nontrivial context.

Implementation.Our constructions and proofs are machine-checked in Coq, and made
freely available as part of the Mechanized Semantic Library. Our mechanization con-
tains a certain amount of “black magic Coqery” (e.g., typeclasses, implicit coercions) to
ensure that it slides together smoothly and works cleanly from the perspective of using
the logic. From time to time we will mention a few design choices that enable simpler
mechanical definitions/proofs, but readers particularly interested in this aspect of the
result should consult the mechanization. Our results are available at:

http://msl.cs.princeton.edu/

Numbering convention.In this presentation we present three classes of equations:def-
initions, numbered with roman numerals; Coq-verifiedtheorems, which we enumerate
with arabic numerals; andaxioms in a given interface, enumerated with letters. Many
models can satisfy a given interface; one must prove the axioms from its construction.

2

2 A Logic of Approximation

Here we present the framework of our Gödel-Löb logic of approximation. The formu-
lae of the logic will be identified with predicates on worlds that arehereditarywith
respect to an approximation relation. This simple base willallow us to build a powerful
intuitionistic logic into which we can later fit the modal andsubstructural features.

2.1 Hereditary scaffolding

We assume the existence of a set ofworlds W, whose precise construction depends
on the domain of interest; see [HDA10,§2] for seven examples drawn from various
program logics. Given a functionP from worldsW to truth valuesT (e.g., T ≡ Prop
in Coq) and a relationR between worlds, we say thatP is hereditary overR when, if
P holds on some worldw, then it also holds on all worlds reachable fromw throughR:

hereditary(P,R) ≡ ∀w,w′. P (w) → (wRw′) → P (w′) (i)

We assume that our worlds come with two operations for axiomatizing approximation:
“level” |w| : W → N and “approximate”w w′ : W ⇀ W. The intuition is that
|w| = n quantifies the “amount of information” in the worldw, and approximating
w into w′ erases (i.e., approximates) some information inw to make it “fit” into level
n− 1. The level of a world|w| counts the number of times the world can pass through
the operation (emphasis: is partial). Apredicate P ∈ P is a function from worlds
to truth valuesT that is hereditary over the approximation relation:

P ≡
{

P ∈ W → T
∣

∣ hereditary(P,)
}

(ii)

In Coq, we define this type as a dependent pair and use implicitcoercions that allow us
to use the pair as a function when desired. We introduce the notationw |= P when we
wish to emphasize that we are thinking ofP as an assertion rather than a function:

w |= P ≡ P (w) (iii)

We sayP entailsQ, writtenP ` Q, when the truth ofP forces the truth ofQ:

P ` Q ≡ ∀w. (w |= P) → (w |= Q) (iv)

We write ∗ and + for the reflexive and irreflexive transitive closure of the approxi-
mate relation, respectively. We say that two worldsw andw′ arefashionable?, written
w ∼ w′, if they contain the same amount of information,i.e., if |w| = |w′|.

Connection to intuitionistic logic.Our framework has much in common with Kripke
models of intuitionistic logic in that predicates are hereditary over a relation between
worlds. We develop this connection further in,e.g., our model for implication in§2.4.

? The name “fashionable” is a play on words from when we used a time-based analogy for levels.
A predicateP which holds fashionably is true on every world “now,” but maybe not tomorrow.

3

2.2 Axiomatization of Approximation

What kinds of properties do we require the approximation operations and | · | to
have? In fact, our categorization for approximation is quite simple:??

Level of bottom: (@w′. w w′) → |w| = 0 (a)

Level of approximation: (w w′) → |w| = |w′|+ 1 (b)

Weak unapproximation: (∃w. |w| = |w′|+ 1) → ∃w. w w′ (c)

If the worldw cannot be further approximated, the level ofw must be0 (a). If the world
w is approximated tow′ then the level ofw must be 1 larger than the level ofw′ (b). Fi-
nally, we sometimes wish to “unapproximate”—that is, givensome worldw′, we would
like to find a worldw such thatw w′; an unapproximation to a givenw′ only exists if
there is some world containing more information thanw′. This unapproximation axiom
allows us to obtain stronger equations relating to the approximation relation (see§3).

Three of the most important consequences of axioms (a)–(c) are the following:

Can’t approximate:|w| = 0 → (@w′. w w′) (1)

Can approximate: (|w| > 0) → ∃w′. w w′ (2)

Well founded:
(

∀w. (∀w′. (w w′) → w′ |=P) → w |=P
)

→ ∀w. w |=P (3)

That is, worlds of level0 cannot be approximated further; but any world of level greater
than0 can be approximated. Moreover, the approximate relation iswell-founded and
thus allows proofs by induction over the action of approximation.

2.3 Models

A model is a triple(W, , | · |) of a set of worlds, an approximate operation, and a level
operation such that axioms (a)–(c) hold. We present a simplemodel to give intuition
and then a series ofgeneratorsthat build complex models from simpler components.
We conclude with a nontrivial model generated byindirection theory.

Naturals. A very simple model is the naturals,(N, N, | · |N), i.e., W ≡ N. It is simple
to define the approximation operations in this setting as follows:n N n′ ≡ n = n′+1
and|n|N ≡ n. Axioms (a)–(c) follow directly from these definitions.

Generators. Showing that a particular model satisfies a collection of axioms is not
always easy. A generator for a collection of axioms such as (a)–(c) is a method for con-
structing models for those axioms in a modular way by combining previous models in
well-behaved ways. This is a particularly valuable technique in mechanized frameworks

?? To avoid clutter in our presentation, when we write an interface axiom we omit universal
quantifications for variables scoped over the entire equation; e.g., axiom (c) is actually:

∀w′
.
(

(∃w. |w| = |w′|+ 1) → ∃w. w w
′
)

4

wherein small changes to the definitions can require significant amount of repair work.
We use generators over a variety of axiom sets to allow rapid construction of models.
From time to time we discover we are in some new setting and in that case our first task
is to define a new generator so that if we encounter that setting again we can apply our
new generator immediately. Our generators for the approximation axioms are:

– Trivial. Given a set of worldsW, we can define thetrivial model(W, 0, | · |0) by
setting and|w|0 ≡ 0 and making the 0 function undefined everywhere. We stated
axiom (c) delicately to enable the trivial model, since we want neither approxima-
tion nor unapproximation. All predicates are automatically hereditary.

– Semiproduct.Given a model(W, , | · |) and some other setS, we can define the
semiproduct model(W×S, W×S, | · |W×S) by defining approximate and level as:

(w, s) W×S (w′, s′) ≡ (s = s′) ∧ (w w′) and |(w, s)|W×S ≡ |w|.

– Bijection.Given a model(W, , |·|), some other setS, and a bijectionf : W → S,
we can define thebijection model(S, f , | · |f) by setting

s f s′ ≡ f−1(s) f−1(s′) and |s|f ≡ |f−1(s)|.

Although we only define a few generators here, we have found that they are sufficient
for a large number of settings. One typically splits worlds into parts with trivial and
nontrivial approximation behavior and combines the two using the semiproduct con-
structor, perhaps defining a bijection to a form more convenient for the remainder of
one’s proof. The trivial model is useful in most cases when the set of worlds does
not have interesting approximation behavior; the exception is when one wishes to use
the recursion operatorµ defined in§4 sinceµ requires nontrivial approximation. In
this case, semiproduct is useful in conjunction with the above model for the naturals
(N, N, | · |N) to addnon-trivial approximation behavior to a set of worldsW.

Indirection theory. The flagship non-trivial model for our approximation axiomsis
given by indirection theory [HDA10]. Indirection theory produces approximate solu-
tions to a class of recursive domain equations defined by the pseudoequation:

K ≈ F ((K ×O) → T)

HereF is a covariant functor (a type function together with an operationfmap satisfying
the functor laws),O is some “other” noncircular data, andK is the object one wishes
to model. A cardinality argument shows that this pseudoequation has no solutions in set
theory. Indirection theory approximates a solution by constructing a typeK (called the
knot) and a model(K, K , | · |K) that satisfies axioms (a)–(c). Our current construction
of K is similar to the one given in [HDA10,§8] but we have enhanced it so that all
predicates contained in a knot are hereditary [ADH10,knot hered.v]. We use the
product constructor to build the related model(K ×O, K×O, | · |K×O) and defineP
as the set of hereditary functions over K×O as in definition (ii).

Indirection theory also constructs two functions,squash : N×F (P) → K and
unsquash : K → N×F (P)whose behavior is given by the following set of equivalences:

squash(unsquash(k)) = k

unsquash(squash(n,z)) = (n, fmap approxn z)

5

That is,squash ◦ unsquash is the identity function, andunsquash ◦ squash is a kind of
approximation function. Thefmap function transformsz : F (P) by locating all of the
predicatesP insidez and replacing them withapproxn(P), defined as:

approxn(P) ∈ P ≡ λw.

{

P (w) |w|K×O < n

⊥ |w|K×O ≥ n

The relationship betweensquash-unsquash and(K, K , | · |K) is given by:

|k| = (unsquash(k)).1
k k′ ↔ let (n,z) = unsquash(k) in (n > 1) ∧ k′ = squash(n− 1,z)

The level ofk is equal to the first projection ofk’s unsquashing and approximation is
equivalent tounsquashing and then resquashing to the next lower level. Axioms (a)–(b)
follow directly; for (c),unsquash and then resquash to the nexthigher level.

We have used indirection theory to reason about first-class locks in a concurrent
program [Hob08]; mutable references in the polymorphicλ-calculus; and program ter-
mination in a setting with function pointers and semanticassert statements [DH10].

2.4 Hereditary Base Logic

Truth constant: w |= > ≡ > (v)

Falsehood constant: w |= ⊥ ≡ ⊥ (vi)

Conjunction: w |= P ∧Q ≡ (w |= P) ∧ (w |= Q) (vii)

Disjunction: w |= P ∨Q ≡ (w |= P) ∨ (w |= Q) (viii)

Impredicative universal: w |= ∀x : τ. P (x) ≡ ∀x : τ. w |= P (x) (ix)

Impredicative existential:w |= ∃x : τ. P (x) ≡ ∃x : τ. w |= P (x) (x)

Implication: w |= P ⇒ Q ≡
∀w′. (w ∗ w′) →
(w′ |= P) → (w′ |= Q)

(xi)

Negation: ¬P ≡ P ⇒ ⊥ (xii)

Given a model of approximation, we can now give semantic definitions for the oper-
ators of our base intuitionistic logic, which includes the usual propositional connectives
as well as powerful higher-order quantification. Except forimplication, each defini-
tion consists of a direct lifting of the underlying metalogic operator and can be proved
hereditary easily from the assumption that the subformulaeare hereditary. In contrast,
implication requires that the hereditary assumption be baked in. The resulting model is
exactly a Kripke model of intuitionistic logic and the standard intuitionistic proof theory
(introduction and elimination rules) can be proved as lemmas from these definitions.

It is worth noting that theτ occurring above in the definitions of universal and ex-
istential quantification is allowed to range over all the types of the metalogic, including
the typepredicate itself; this makes the quantifiersimpredicative. In contrast, a predica-
tive quantifier would only be allowed to quantify over objects that are smaller according

6

to some stratification, which turns out to be a significant technical restriction. Modeling
certain programming language features, such as function closures, requires the stronger
impredicative style of quantification that we provide.

3 The Very Model of a Modern Multimodal Logic

Appelet al. [AMRV07] showed how to reason about the action of approximation using
modal logic; we go further using themultimodalapproach outlined in [DAH08]. A
modalityM ∈M is a binary relation that commutes with the approximation relation :

M ≡
{

M ∈ W → W → T
∣

∣

∣

∀w w′′.
(

∃w′.(w w′) ∧ (w′Mw′′)
)

↔
(

∃w′.(wMw′) ∧ (w′ w′′)
)

}

(xiii)

This condition on modalities is used to guarantee that the modal operators below are
hereditary. Most “reasonable” relations one would like to define are modalities. We have
seen four approximation relations: approximate and its reflexive ∗ and irreflexive
 + transitive closures, and the same-level relation fashionably ∼; all are modalities:

{ , ∗, +,∼} ⊂ M (4)

The point of characterizing modalities is that we can then define modal operators pa-
rameterized by various modalities.

Necessarily: w |= �M P ≡ ∀w′. (wMw′) → (w′ |= P) (xiv)

Hypothetically: w |= ♦M P ≡ ∃w′. (w′Mw) ∧ (w′ |= P) (xv)

Note we use the standard definition of the universal modality�M , but our definition of
the existential modality♦M is backwards from what one might expect; indeed, we use
the “proof-theoretic” dual discussed by Restall [Res00] asopposed to the more familiar
boolean dual. We work with this proof-theoretic dual because it is immediately defin-
able given the commutativity restrictions from definition (xiii) (whereas the boolean
dual requires a different condition).

One of the major advantages of identifying and using modal operators is that there
are a variety of useful rules and equations that apply to all modal operators. A few of
these are listed below.

MP ` Q ↔ P ` �MQ (5)

�M (P ⇒ Q) ` �M P ⇒ �MQ (6)

�M (P ∧Q) = �M P ∧�M Q (7)

♦M (P ∨Q) = ♦M P ∨ ♦M Q (8)

�M

(

∀x : τ. P (x)
)

= ∀x : τ. �M P (x) (9)

♦M
(

∃x : τ. P (x)
)

= ∃x : τ. ♦M P (x) (10)

7

Lemma (5) gives the characteristic relationship between the� modality and its associ-
ated dual♦ modality. Readers familiar with modal logics will recognize (6) as axiom
K, which is characteristic the “normal” modal logics.

Given the data we have about worlds and approximation at thispoint, we can define
two important modal operators which capture some of the important aspects of the
approximation model.

Approximately: B P ≡ �
 +P (xvi)

Fashionably: © P ≡ �∼ P (xvii)

The approximation modality. is especially important because it mediates the action
of approximation. It interacts in a significant way with boththe key Gödel-Löb induc-
tion rule (below) and with the recursion operator describedin §4. The fashionability
modality also interacts in a strong way with recursion. Because of the special relation-
ship has with all the formulae of the logic,. enjoys some additional properties.

. (�M P) = �M (. P) (11)

. (P ⇒ Q) = . P ⇒ . Q (12)

. (P ∨Q) = . P ∨ . Q (13)

Q ∧ . P ` P → Q ` P (14)

Lemma (11) shows that. commutes with every�modality; this is a consequence of
the validity condition for modal operators. Lemma (12) shows that. enjoys a stronger
form of (6). Lemma (14), called the Löb rule, is especially notable because it embodies
a kind of induction principle. It says that we can prove thatQ entailsP if we can
show the (apparently) weaker statement thatQ∧.P entailsP ; here.P is the induction
hypothesis. The Löb rule follows from (3).

Note that (12) is a strengthened version of (6) with an equality rather than an en-
tailment. We prefer equalities (when they can be achieved) to entailments because they
allow us to use substitution tactics in mechanized proofs, (e.g.,rewrite in Coq) which
is significantly more convenient than introducing a cut.

4 Recursion

In addition to its other benefits, the approximation structure baked into our logic gives us
a powerful way to define recursive predicates. Suppose we have a predicate functionF :
predicate → predicate; then we can construct the recursive predicateµF : predicate
satisfying the usual fixpoint equationµF = F (µF) provided thatF is contractive.
Before we can formally define contractiveness we need a few additional definitions.

Recall from above the “fashionably” modality© P ≡ �∼ P . The underlying
relationw ∼ w′ holds iff |w| = |w′|, so© P holds whenP holds in all worlds of the
same level. Using©, we define a stronger form of implication called “subtyping.”

P ⊆ Q ≡ © (P ⇒ Q) (xviii)

8

Subtyping is quite a bit stronger than regular implication because the only information
it can “see” is the level of the current world. However, it is somewhat weaker than
unconditional entailment. That is, ifw |= P ⊆ Q it might not be the case thatP ` Q.

We say thatP andQ areequivalentand writeP ∼= Q iff P ⊆ Q andQ ⊆ P . The
intuition is thatw |= P ∼= Q holds ifP andQ are indistinguishable on worlds of level
w and smaller. Any world that separatesP fromQ must have a level greater than|w|.

We say thatF is contractive iff:

∀P,Q. . (P ∼= Q) ` F (P) ∼= F (Q) (xix)

What does this mean? Every time you iterate the predicate functionF , it “consumes”
one level of approximation before using its argument. Usually, this means that the defi-
nition ofF contains a. operator guarding the occurrence of its argument.

What all this means is that we can defineµ as a finite number of iterations ofF :

w |= µF ≡ w |= F |w|(⊥) (xx)

HereFn meansF iteratedn times. The key point is that as long asF is contractive
then we can prove the defining fixpoint theorem forµ:

µF = F (µF) (15)

Note that in the end we get a strong fixpoint theorem such thatµF is simplyequalto
its one-step unfolding, which makes this a form ofequirecursion. In contrast, systems
with isorecursiontypically require some computational step to allow the folding and
unfolding of recursive definitions. Equirecursion is more convenient for our purposes
because it allows us to use the rewriting facilities of the proof assistant, and also because
it helps to decouple the semantics of the assertion logic from the (typically operational)
semantics of the language. Furthermore, using the Löb induction rule and the fact that
F is contractive, we can easily show thatµF is theuniquefixpoint ofF [Ric10,§5].

5 Separation Algebras

Separation algebras are mathematical structures used to model separation logic. They
provide the notion of disjoint merging that is central to themeaning of the operators
of separation logic. We use a variant called a disjoint multi-unit separation algebra
(hereafter just “DSA”) [DHA09]. Briefly, a DSA is a setS and an associated three-
place partialjoin relation⊕, writtenx⊕ y = z, such that the join relation satisfies:

Functional: (x ⊕ y = z1) → (x⊕ y = z2) → z1 = z2 (d)

Commutative: x⊕ y = y ⊕ x (e)

Associative: x⊕ (y ⊕ z) = (x⊕ y)⊕ z (f)

Cancellative: (x1 ⊕ y = z) → (x2 ⊕ y = z) → x1 = x2 (g)

Units: ∀x. ∃ux. x⊕ ux = x (h)

Disjointness: (x ⊕ x = y) → x = y (i)

9

These axioms define a structure that is like a commutative monoid in many ways, except
that⊕ is allowed to be a partial operation. The partiality is important, because it encodes
disjointness. Ifx⊕ y = z, thenx andy are disjoint, by definition.

Hidden in these axioms is the idea of anidentity. We sayx is an identity if whenever
x ⊕ y = z, theny = z. One fundamental property of identities is thatx an identity if
and only ifx ⊕ x = x. The units axiom (h) asserts the existence of (possibly many)
identities. It is a consequence of the axioms that each element must have aunique
identity associated with it.

In the following section we shall see how to use a separation algebra to build a sep-
aration logic. For the remainder of this section, we will briefly touch on some example
DSAs and constructions for building more complicated ones.

5.1 Models

A model of a separation algebra is a set of worldsW together with a join relation⊕
satisfying axioms (d)–(i). We give two trivial examples, followed by a series of simple
generators, and conclude with some nontrivial generators and examples.

Examples and generators.The DSA axioms are well-behaved in the sense that they are
easily propagated across a variety of useful constructions. In our work we have used the
following, all of which are already implemented in Coq to enable rapid development:

– Discrete.Given a setS, define thediscrete DSA(S,⊕=) by defining

s1 ⊕= s2 = s3 ≡ s1 = s2 = s3

Every element joins only with itself and is an identity. Axioms (d)–(i) follow.
– Option.Given a setS, define theoption DSA(S?,⊕?) by settingS? ≡ None +
Some(s) and the join relation⊕? as the least relation satisfying (wheres? ∈ S?):

None ⊕? s? = s?
s? ⊕? None = s?

The⊕? relation includesNone⊕? None = None. Axioms (d)–(i) follow easily.
– Products.If we are given two DSAs(A,⊕A) and(B,⊕B), we can define theprod-

uct DSA(A×B,⊕A×B) componentwise by setting:

(a1, b1) ⊕A×B (a2, b2) = (a3, b3) ≡ (a1 ⊕A a2 = a3) ∧ (b1 ⊕B b2 = b3)

Axioms (d)–(i) follow directly from the same axioms onA andB.
– Functions.Given a setA and a DSA(B,⊕B), we can define thefunction DSA
(A → B,⊕A→B) by lifting the DSA onB pointwise as follows:

f ⊕A→B g = h ≡ ∀a.
(

f(a) ⊕B g(a) = h(a)
)

Axioms (d)–(i) follow directly from the axioms onB.

10

– Bijection. Given a DSA(A,⊕A), a setB, and a bijectionf : A → B, we can
define thebijection DSA(B,⊕f) by setting

b1 ⊕f b2 = b3 ≡ f−1(b1) ⊕A f−1(b2) = f−1(b3)

Axioms (d)–(i) follow becausef is a bijection and the axioms hold onA.

The previous generators are simple but very useful. For example, if A is a set of ad-
dresses andV a set of values, then the archetypical example of partial program heaps
is given by the DSA(A → (V?),⊕A→(V?)), using the function and option generators.
We have a large number of other generators in our toolkit: void, unit, discrete, disjoint
sums, lists, subset, lift,Π-types,Σ-types, finite partial maps, and lattices; a number
of these are described in some detail in [DHA09]. Here we explain another generator,
similar in some ways to the bijection DSA covered above but more general:

– Section–retraction.Suppose we have a DSA(B,⊕B). A functionh : B → B is a
join homomorphismwhen:

b1 ⊕B b2 = b3 → h(b1) ⊕ h(b2) = h(b3) (xxi)

That is, joining is preserved byh. Now suppose we have a setA and a section–
retraction pair: two functionsf : A → B andg : B → A such thatg ◦ f is the
identity function onA; note that in any section–retraction pairf is automatically
injective whileg is automatically surjective. Suppose further thatf ◦ g : B → B is
a join homomorphism. Define thesection–retraction DSA(A,⊕〈f,g〉) by setting:

a1 ⊕〈f,g〉 a2 = a3 ≡ f(a1) ⊕B f(a2) = f(a3)

In other words, we take the separation structure induced on the preimage off .
Axioms (d), (g), and (i) follow directly from the injectivity of f and the underlying
axioms on⊕B. Axiom (e) is even simpler and is direct from the commutativity of
⊕B. The associativity (f) and units (h) axioms are tougher; both require thatg ◦ f
is the identity,f ◦ g is a join homomorphism, and the underlying axioms on⊕B.

The significance of the section–retraction generator is that it will be just what is
needed to handle theunsquash–squash pair constructed by indirection theory.

6 Mixing Separation and Approximation

Once we have defined the separation structure on a set of worlds, we are nearly ready
to define the operators of separation logic. However, to interface with the approxima-
tion features of the logic, we need some additional axioms which ensure that separation
and approximation can play well together in the same sandbox(see figure 1). These
four axioms have the flavor of commuting diagrams; we requirethat the approximation
relation and separation “slide around” each other cleanly.(There are a total of six pos-
sible cases, but two are subsumed by commutativity). These axioms let us prove the
heredity of the operators of separation logic and to show certain useful results about the
commutativity of approximation operators with separationoperators.

11

(w1 ⊕ w2 = w3) → (w1 w′
1) →

∃w′
2, w

′
3. (w′

1 ⊕ w′
2 = w′

3) ∧ (w2 w′
2) ∧ (w3 w′

3)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(j)

(w1 ⊕ w2 = w3) → (w3 w′
3) →

∃w′
1, w

′
2. (w′

1 ⊕ w′
2 = w′

3) ∧ (w1 w′
1) ∧ (w2 w′

2)

w1 w2 = w3

Ã Ã Ã
w’1 w’2 = w’3

Ã Ã Ã
1 2 3

(k)

(w′
1 ⊕ w′

2 = w′
3) → (w1 w′

1) →

∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w2 w′
2) ∧ (w3 w′

3)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3
Ã Ã Ã

1 2 3

(l)

(w′
1 ⊕ w′

2 = w′
3) → (w3 w′

3) →

∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w1 w′
1) ∧ (w2 w′

2)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(m)

Fig. 1. Axioms for Mixing Separation and Approximation

Now we can give the definitions of the standard operators of separation logic.

Empty: w |= emp ≡ identity w (xxii)

Separation: w |= P ∗Q ≡
∃w1, w2. (w1 ⊕ w2 = w) ∧

(w1 |= P) ∧ (w2 |= Q)
(xxiii)

Seplication:w1 |= P −∗ Q ≡
∀w′

1, w2, w. (w1
∗ w′

1) → (w′
1 ⊕ w2 = w)

→ (w2 |= P) → (w |= Q)
(xxiv)

The assertionemp and the separating conjunction∗ can be shown hereditary by using
axioms (j) and (k). Notice that the definition of seplicationexplicitly quantifies over all
more approximate worlds, just as does the definition of implication, making it immedi-
ately hereditary from the definition. Just as with implication, the semantics takes on an
intuitionistic flavor, but in general works exactly as expected.

With these definitions stated, we can easily prove the standard inference rules of
separation logic and various equalities among formulae. Note equations (20) and (21);
these elegant equations are the result of our insistence that approximation and separation
interact smoothly. Their proofs make essential use of axioms (l) and (m).

12

Commutativity: P ∗Q = Q ∗ P (16)

Associativity: (P ∗Q) ∗R = P ∗ (Q ∗R) (17)

Identity: emp ∗ P = P (18)

Seplication adjoint: (P ∗Q) ` R = P ` (Q−∗R) (19)

Approx sepconjunction: .(P ∗Q) = (.P ∗ .Q) (20)

Approx seplication: .(P −∗Q) = (.P −∗ . Q) (21)

Split sepconjunction: (P ` Q) → (R ` S) → (P ∗R) ` (Q ∗ S) (22)

Cut seplication: (P ` Q−∗R) → (S ` Q) → (P ∗ S) ` R (23)

In addition to the standard operators of separation logic, we can define three sub-
structural modalities. First, we say thatw1 is asubstateof w2, writtenw1 � w2, when

w1 � w2 ≡ ∃w′. w1 ⊕ w′ = w2 (xxv)

Informally, w1 is a smaller state thanw2 because you can addw′ to w1 to getw2; it
corresponds to thesubstaterelation with respect to the separation structure. Second,we
say thatw1 andw2 areorthogonal, writtenw1]w2, when

w1]w2 ≡ ∃w′. w1 ⊕ w2 = w′ (xxvi)

Two states are orthogonal when they are compatible in the sense that they can join
together. Finally,w1 andw2 aresubstructurally comparable, writtenw1

⊕
∼w2, when

w1
⊕
∼w2 ≡ ∃w. (w1]w) ∧ (w2]w) (xxvii)

Two worlds are substructurally comparable when there exists some world (typically an
identity) that is orthogonal to both of them. We can considerthe elements of a DSA as
being divided into equivalence classes where there is one class for each unit, and every
element with the same unit is in the class. Then⊕

∼ ranges over all the elements in the
same equivalence class.

All of these substructural relations are valid modalities according to the definition
from §3. The validity proofs are direct consequence of axioms fromFigure 1.

{�,], ⊕∼} (M (24)

A further consequence is that our substructural modalitiesare all fashionable:

(w1 � w2) ∨ (w1]w2) ∨ (w1
⊕
∼w2) → w1 ∼ w2 (25)

We often find it convenient to express substructural ideas using modalities like these.
For example, consider the diamond form of the substate relation; ♦�P holds exactly
when some substate of the current state satisfiesP . In other words, adding♦� makes a
predicate invariant under state expansion.† A little manipulation shows that:

♦�P = P ∗ >. (26)

† Such predicates were calledintuitionistic in Reynolds’ work on separation logic [Rey02].

13

x′ ⊕ f(y) = f(z) →

∃x, y0. x⊕ y0 = z ∧ f(x) = x′ ∧ f(y0) = f(y)

x y0 = z

f f f

x’ f(y) = f(z)

f f f (n)

f(x)⊕ f(y) = z′ →

∃y0, z. x⊕ y0 = z ∧ f(y0) = f(y) ∧ f(z) = z′

x y0 = z

f f f

f(x) f(y) = z’

f f f (o)

Fig. 2. Left and right unmappings

7 Separation logics over knots

An important use case (indeed, our motivating use case) for combining approximation
with separation are the “knots” of indirection theory. We can quite easily demonstrate
that knots satisfy the approximation axioms using the interface provided by indirec-
tion theory. However, to define a separation structure on knots, we need to define an
appropriate join relation and prove the DSA axioms. The knots provided to clients are
opaque, which means the client cannot examine the details of the construction. How-
ever, the client has provided the critical functorF describing the internal structure of
unsquashed knots. We require the client to define a separation structure overF which
we then use to induce a separation structure over knots.

We proceed in stages. First we must make the setN × F (P) into a DSA. We will
require that the client of indirection theory demonstrate thatF is a functor on DSAs,
i.e., wheneverX is a DSA, thenF (X) is also a DSA. Furthermore, we require that
wheneverf : X → Y is a join homomorphism, thenfmap f : F (X) → F (Y)
must also be a join homomorphism. Now we use our generators toconstruct the DSA
(N × F (P),⊕(N=)×(F (P=))): that is, we pair up a discrete DSA onN with the DSA
generated by applyingF to the discrete DSA onP.

We will use the section–retraction generator to induce a DSAfor the setA ≡ K

from the above DSA forB ≡ N × F (P). Indirection theory gives us the section–
retraction pair(unsquash, squash). It is easy to show thatunsquash ◦ squash is a join
homomorphism onB, completing the construction of the DSA forK.

We have two of the ingredients needed for a logic over knots with both separation
and approximation. We have the approximation structure andwe have a DSA. However,
in order to complete the picture we need to prove the distributive axioms from§6.

The two “forward” axioms (j) and (k) follow easily from the assumption thatF is
a functor on DSAs. The “backward” axioms (l) and (m), however, are more involved.
Proving these axioms appears to require additional technical restrictions on the func-
tor F , having to do with “unmapping.” The precise statement of these technical re-
quirements is given in Figure 2 and is rather involved. However, proving that particular
functorsF have this property is usually easy.

Suppose one has a functionf : A → B whereA andB are DSAs. We say thatf
hasleft unmappingswhen it satisfies axiom (14) andright unmappingswhen it satisfies

14

(15). We say a functorF preserves unmappingsif, wheneverf is a join homomorphism
with left (right) unmappings, thenfmap f has left (right) unmappings.

The existence of unmappings means thatf has a weak kind of invertability property,
and the preservation of unmappings means that when such a weakly invertable function
is applied withfmap, the resulting function is itself weakly invertable.

As with approximation and DSAs, we can show that many standard constructions
(when considered as functors) have the property of preserving unmappings. For exam-
ple, products, disjoint sums, functions and lists all preserve unmappings.

If F preserves unmappings, then we can prove the “unapproximation” axioms (12)
and (13) for knots. The key is to note that theapprox function has left and right un-
mappings, and then lift the unmappings through the functorF using (14) and (15). The
unmappings offmap f then provide the required witnesses for axioms (12) and (13).

We now have all the pieces necessary to build a separation logic with approximation
over the knots of indirection theory. In the final accounting, the client must provide, in
addition to the data necessary for indirection theory itself, a proof thatF is a functor
on DSAs, and an easy technical proof about the preservation of unmappings. From this
basic data, a rich logic of separation and approximation is automatically built.

8 Conclusion

We have presented a method for constructing powerful assertion logics using a Kripke
semantics over a set ofworlds. We have given axiomatic interfaces that worlds must
satisfy in order to support higher-order stores in the step-indexing style, and to support
substrucural features in the style of separation logic. These two features interact in non-
trivial ways, and we have further shown how to get an elegant and well-behaved logic
by requiring the approximation and separation relations tocommute with one another.
Finally, we have shown throughout the paper how to constructmodels of these ax-
iomatic interfaces that support a variety of interesting programming language domains.
The proofs and constructions that appear in this paper have been mechanized in Coq
and are freely available as part of the Mechanized Semantic Library [ADH10].

Acknowledgements.Aquinas Hobor is supported by a Lee Kuan Yew Postdoctoral Fel-
lowship. Robert Dockins and Andrew W. Appel are supported inpart by NSF grant
CNS-0910448 and AFOSR grant FA9550-09-1-0138.

References

[ADH10] Andrew Appel, Robert Dockins, and Aquinas Hobor. Mechanized Semantic Library.
Available at http://msl.cs.princeton.edu, 2009–2010.

[Ahm04] Amal J. Ahmed.Semantics of Types for Mutable State. PhD thesis, Princeton Uni-
versity, Princeton, NJ, November 2004. Tech Report TR-713-04.

[AMRV07] Andrew W. Appel, Paul-Andre Melliès, Christopher D. Richards, and Jerôme Vouil-
lon. A very modal model of a modern, major, general type system. In Proc. 34th An-
nual Symposium on Principles of Programming Languages (POPL’07), pages 109–
122, January 2007.

15

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and HongseokYang. Local action and abstract
separation logic. InLICS ’07: Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Science, pages 366–378, 2007.

[DAB09] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical rela-
tions. InProceedings 24th Annual IEEE Symposium on Logic in ComputerScience
(LICS’09), 2009.

[DAH08] Robert Dockins, Andrew W. Appel, and Aquinas Hobor.Multimodal separation logic
for reasoning about operational semantics. In24th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXIV), pages 5–20. Springer Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 2008.

[DH10] Robert Dockins and Aquinas Hobor. A theory of termination via indirection. Under
submission, July 2010.

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W. Appel.A fresh look at separa-
tion algebras and share accounting. InThe 7th Asian Symposium on Programming
Languages and Systems. Springer ENTCS, 2009. To appear.

[HAZ08] Aquinas Hobor, Andrew W. Appel, and Francesco ZappaNardelli. Oracle semantics
for concurrent separation logic. InProc. European Symp. on Programming (ESOP
2008) (LNCS 4960), pages 353–367. Springer, 2008.

[HDA10] Aquinas Hobor, Robert Dockins, and Andrew W. Appel.A theory of indirection via
approximation. InProc. 37th Annual ACM Symposium on Principles of Programming
Languages (POPL’10), pages 171–185, January 2010.

[Hob08] Aquinas Hobor.Oracle Semanatics. PhD thesis, Princeton University, Princeton, NJ,
November 2008.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or: programming a com-
piler with a proof assistant. InPOPL’06, pages 42–54, 2006.

[Nip02] Tobias Nipkow. Hoare logics for recursive procedures and unbounded nondeter-
minism. InComputer Science Logic, volume 2471/2002 ofLNCS, pages 155–182.
Springer, 2002.

[Res00] Greg Restall.An Introduction to Substructural Logics. Routledge, London, England,
2000.

[Rey02] John Reynolds. Separation logic: A logic for sharedmutable data structures. InLICS
2002: IEEE Symposium on Logic in Computer Science, pages 55–74, July 2002.

[Ric10] Christopher D. Richards.The Approximation Modality in Models of Higher-Order
Types. PhD thesis, Princeton University, Princeton, NJ, June 2010.

16

